Existence of Periodic Solutions for a certain Non-Linear Third Order Differential Equation

Hilary Mbadiwe Ogbu, Ph.D.

Department of Industrial Mathematics and Applied Statistics
Ebonyi State University, Abakaliki, Nigeria
E-mail: ohilary2006@yahoo.com

ABSTRACT

In this paper, existence of periodic solutions for equations:

\[\ddot{x} + f(\dot{x}) + g(t, \dot{x}) + a_1 x = p(t, x, \dot{x}, \ddot{x}) \quad \text{and} \]
\[D^{(r)} x(0) = D^{(r)} x(2\pi), r = 0, 1, 2, \quad D = \frac{d}{dt} \]

has been obtained, when \(f(\dot{x}) \) is arbitrary, by the use of the Leray Schauder fixed-point technique and the integrated and so-called energy equation as the mode for estimating the a priori bounds.

(Keywords: fixed point technique, a priori bounds, compact and equicontinuity, integrated and so called energy equation)

1.0 INTRODUCTION

Consider the third order differential equation:

\[\ddot{x} + f(\dot{x}) + g(t, \dot{x}) + a_1 x = p(t, x, \dot{x}, \ddot{x}) \quad \text{(1.1)} \]

with boundary conditions

\[D^{(r)} x(0) = D^{(r)} x(2\pi), r = 0, 1, 2, \quad D = \frac{d}{dt} \quad \text{(1.2)} \]

where \(a_3 > 0 \) is a constant and \(f, g, \) and \(p \) are continuous functions depending on the arguments shown with \(p \) periodic in \(t \) that is

\[P(t, x, \dot{x}, \ddot{x}) = p(t + 2\pi, x, \dot{x}, \ddot{x}) \]

In the special case:

\[\dddot{x} + a\ddot{x} + b\dot{x} + cx = p(t) \quad \text{(1.3)} \]

in which \(a, b, c \) are constants and \(p \) is a continuous function and \(2\pi \) periodic in \(t \). It is well known that if the Routh Hurwitz conditions hold,

\[a > 0, \quad b > 0, \quad ab > c > 0 \quad \text{(1.4)} \]

the roots of the auxiliary equation

\[\lambda^3 + a\lambda^2 + b\lambda + c = 0 \quad \text{(1.5)} \]

have negative real parts, so that the existence of periodic solutions when \(p \) is also \(2\pi \) periodic in \(t \) can be verified for (1.3) when (1.4) holds.

In the literature, generalizations of these results are available for several non-linear third order differential equations. For instance, Ezeilo (1960) has proven the existence of at least one harmonic oscillation for the equation:

\[\dddot{x} + a\ddot{x} + b\dot{x} + h(x) = p(t) \quad \text{(1.6)} \]

where, \(h \) and \(p \) are continuous functions.

A similar result has also been proven by Pliss (1961) where the forcing term \(p \) now depends on \(t, x, \dot{x} \) and \(\ddot{x} \).

Villari (1964), proved the existence of periodic solutions for the equation:

\[\dddot{x} + \varphi(\dot{x}) + b\dot{x} + c, x = p(t), b, < 0, c, > 0 \quad \text{(1.7)} \]
Subject to the condition:

\[\{ \varphi(z_1) - \varphi(z_2) \} (z_1 - z_2) < 0 \quad \text{for} \quad z_1 \neq z_2 \quad (1.8) \]

However, condition (1.8) did not permit the use of the Leray–Schauder fixed-point technique.

Reissig, Sansone, and Conti (1974), considered the equation,

\[\ddot{x} + \varphi(\dot{x}) + bx + cx = p(t) \quad \text{---------- (1.9)} \]

where \(b > 0, c > 0, |p(t)| \leq m \) for \(t > 0 \) or the corresponding system,

\[\dot{x} = y, \dot{y} = z, z = p(t) - cx - by - \varphi(z) \quad (1.10) \]

Ezeilo (1986) proved the existence of periodic solutions for the equation

\[\ddot{x} + g_4(\ddot{x}) + b_4 \dot{x} + c_4 x = p_4(t, x, \ddot{x}, \dot{x}) \quad (1.11) \]

where \(b_4, c_4 \) are positive constants and \(g_4, p_4 \) are continuous functions with,

\[p(t, x, \dot{x}, \ddot{x}) = p(t + 2\pi, x, \dot{x}, \ddot{x}) \]

Ezeilo and Nkashama (1988), proved the existence of periodic solutions at resonance for the equation:

\[\ddot{x} + a\ddot{x} + bx + g(t, x) = p(t, x, \ddot{x}, \dot{x}) \quad -- (1.12) \]

Anders (1985) proved the existence of 2\(\pi \) periodic solutions for the equation:

\[\ddot{x} + f(t, x) + bx + cx = p(t) \quad \text{---------- (1.13)} \]

by constructing the Green’s function explicitly and weakening the growth conditions

\[\lim_{|t| \to \infty} \frac{f(t, z)}{z} = 0 \]

by a concrete linear restriction on \(f \). When (1.4) is not fulfilled, the existence of 2\(\pi \) periodic solutions can still be established for a variety of equations (1.3) and generalization to nonlinear terms are known. Some examples are found in Reissig, Sansone, and Conti (1974).

For the more general cases like (1.1) – (1.2), it is difficult to locate in the literature or otherwise construct a suitable Lyapunov function corresponding to \(p = 0 \) which might be utilized in estimating \(\int_{0}^{2\pi} x^2 dt \) or \(\int_{0}^{2\pi} x^2 dt \).

The objective of this paper is to give some other result in the “non-Routh Hurwitz” direction. To be more precise, let us take the auxiliary equation (1.5) which has no purely imaginary root,

\[\lambda = 2\pi \omega^{-1} \quad (\omega = 0), \quad \text{if} \quad ac > 0 \quad \text{and} \quad a^{-1}c \neq 4\pi^2 \omega^{-2}, \quad b \text{ arbitrary} \quad \text{---------- (1.14)} \]

Thus if \(p \) is 2\(\pi \) periodic in \(t \), the linear equation (1.3) has indeed a 2\(\pi \) periodic solution if \(a, b, c \) are also subject to (1.14) and we shall see here a suitable extension to equation (1.1). The results are summarized in the following:

Theorem 1: In addition to the basic assumptions on \(f, g \) and \(p \), suppose that

(i) There exists \(a_2 > 0 \) \(\alpha, \beta \) constant such that:

\[\alpha + \beta = -1 \quad \text{---------- (1.15)} \]

(ii) \(g \) is a \(c^1 \) function such that:

\[|g_x(t, \dot{x})| \leq \alpha, \quad |g_x(t, \ddot{x})| \leq \beta \quad \text{---------- (1.16)} \]

Then equations (1.1) – (1.2) have at least one 2\(\pi \) periodic solution for arbitrary \(f \).

Remark: The major interest is on \(g(t, \dot{x}) \) and \(f \). They have been used without any restrictions placed on them. It is also interesting to note that \(p \) is not subjected to further conditions other than the assumed continuity condition and 2\(\pi \) periodicity in \(t \).
2.0 NOTATION

The proof which follows denotes capitals $D_{0}, D_{1}, D_{2}, \cdots$ which depend on f, g, a_{3} and p.

$D_{i,j}$ ($i=0,1,2, \cdots$) retains a fixed identity throughout the proof of Theorem 1. The symbols $[0,2\pi]$, $[1,2\pi]$, with respect to the mapping: $[0,2\pi] \rightarrow R$, will have their usual meaning.

That is for a given function $\theta : [0,2\pi] \rightarrow \square$;

\[
|\theta|_{\infty} \triangleq \max_{0 \leq t \leq 2\pi} |\theta(t)|, \quad |\theta| \triangleq \int_{0}^{2\pi} |\theta(s)| ds
\]

\[|\theta|_{2} \triangleq \left(\int_{0}^{2\pi} \theta^{2}(s) ds \right)^{1/2} \quad \text{(2.1)}
\]

3.0 PROOF OF THEOREM 1

The proof of theorem 1 is by the Leray Sechaunder fixed point technique and the starting point is the parameter λ dependent equation:

\[
\ddot{x} + (1-\lambda) a_{2} \dot{x} + \lambda f(\dot{x}) + \lambda g(t, \dot{x}) + a_{3} x = \lambda p(t, x, \dot{x}, \ddot{x})
\]

or,

\[
\ddot{x} + f_{\dot{a}}(\dot{x}) + \lambda g(t, \dot{x}) + a_{3} x = \lambda p(t, x, \dot{x}, \ddot{x})
\]

\[\text{where}\]

\[
f_{\dot{a}}(\dot{x}) = (1-\lambda) a_{2} \dot{x} + \lambda f(\dot{x})
\]

by setting

\[
x = y, \dot{y} = z, \ddot{z} = -f_{\dot{a}}(\dot{x}) - \lambda g(t, \dot{x}) - a_{3} x + \lambda p
\]

\[\text{the equation (3.1) can be written compactly in matrix form as:}\]

\[
\dot{X} = AX + \lambda F(t, X)
\]

\[\text{where}\]

\[
X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_{3} & 0 & -a_{2} \end{bmatrix}, F = \begin{bmatrix} 0 \\ Q \end{bmatrix}
\]

where

\[
Q = -f(\ddot{x}) + a_{2} \ddot{x} - g(t, \dot{x}) + \lambda p
\]

We remark that equation (3.1) reduces to a linear equation:

\[
\ddot{x} + a_{2} \ddot{x} + a_{3} x = 0 \quad \text{---------------------- (3.6)}
\]

when $\lambda = 0$ and to equation (1.1) when $\lambda = 1$.

The eigenvalues of A can be verified to be the roots of the auxiliary equation of (3.6), namely

\[
r^{3} + a_{3} r^{2} + a_{3} = 0 \quad \text{---------------------- (3.7)}
\]

By (1.14) and with $a_{3} > 0$, the equation (3.7) has no roots of the form $r = i\beta$, (β real). Thus, the matrix $(\ell^{-2\pi A} - I)$, I (being the identity 3×3 matrix) is invertible. Therefore $X = X(t)$ is a 2π periodic solution of (3.4) if and only if X satisfies the equation:

\[
X = \lambda TX \quad \text{---------------------- (3.8)}
\]

Where the transformation T is defined by:

\[
(tX)(t) = \int_{t}^{t+2\pi} \ell^{-2\pi A} - I \ell^{(t-s)A} F(s, X(s)) ds
\]

\[\text{where}\]

\[
\ell^{-2\pi A} - I \ell^{(t-s)A} F(s, X(s)) ds
\]

Let S be the space of all real continuous and
3 – vector function \(\vec{X}(t) = (\vec{x}(t), \vec{y}(t), \vec{z}(t)) \)

which are of period \(2\pi \) and with norm \(\|\vec{X}\| \) of \(\vec{X}(t) = (\vec{x}(t), \vec{y}(t), \vec{z}(t)) \) defined by:

\[
\|\vec{X}\| = \sup_{0 \leq t \leq 2\pi} \left\{ |\vec{x}(t)| + |\vec{y}(t)| + |\vec{z}(t)| \right\} \tag{3.10}
\]

If the mapping of \(T \) is completely continuous, mapping of into itself it suffices for the proof of theorem: merely to establish apriori bounds. Next is to show that the conditions of Schaefer’s lemma [1955] are satisfied under the hypotheses of Theorem 1. This requires the proof of the following:

Lemma 1.

Let \(T \) be a compact transformation of a normed linear space \(S \) into itself. Let \(\lambda \in [0,1] \). Then either there is an \(x \in S \) such that \(x = \lambda \cdot T(x) \) or the set \(\{x \in S : x = \lambda \cdot T(x), \ 0 < \lambda < 1\} \) is not bounded. For further details on the proof of Lemma 1, see Tejumola 1966.

Finally the proof of Theorem 1 will suffice to concentrate on equation (1.3.1) and to prove simply that there exists a constant \(D_0 > 0 \) independent of \(\lambda \) such that

\[
|x|_e \leq D_0, |x|_e \leq D_0, |\dot{x}|_e \leq D_0, \quad \ldots \ldots \tag{3.11}
\]

4.0 VERIFICATION OF THE APRIORI BOUNDS

Let \(x(t) \) be a possible \(2\pi \) periodic solution of \((3.1) \). The main tool to be used in this verification is the integrated and so called energy equation \(\dot{W} \) defined by:

\[
\dot{W} = -\ddot{x}^2 + \dddot{x}g_x(t, x) + \dddot{x}g_x(t, x) + \lambda p\dddot{x} \tag{4.2}
\]

Integrating (4.2) with respect to \(t \) from \(t = 0 \) to \(t = 2\pi \) and using the \(2\pi \) periodicity condition, we have the following:

\[
0 \leq -\int_0^{2\pi} \dddot{x}^2 dt + \int_0^{2\pi} \dddot{x}g_x(t, x) dt + \int_0^{2\pi} \dddot{x}g_x(t, x) dt + \int_0^{2\pi} p\dddot{x} dt
\]

By equation (1.15), we have:

\[
\int_0^{2\pi} \dddot{x}^2 dt - \alpha \int_0^{2\pi} \dddot{x}^2 dt - \beta \int_0^{2\pi} \dddot{x}^2 dt \leq |p| \int_0^{2\pi} |\dddot{x}| dt
\]

In particular,

\[
\int_0^{2\pi} \dddot{x}^2 dt \leq D_1 \int_0^{2\pi} |\dddot{x}| dt \leq D_1 (2\pi)^{1/2} \left(\int_0^{2\pi} \dddot{x}^2 dt \right)^{1/2}
\]

by Schwartz’s inequality.

Therefore:

\[
\left(\int_0^{2\pi} \dddot{x}^2 dt \right)^{1/2} \leq D_1 (2\pi)^{1/2} = D_2 \quad \ldots \ldots \tag{4.3}
\]

Now since \(\dddot{x}(0) = \dddot{x}(2\pi) \) implies that there exists \(\dddot{x}(\tau) = 0 \) for some \(\tau \in [0, 2\pi] \), such that:

\[
\dddot{x}(t) = \dddot{x}(\tau) + \int_{\tau}^t \dddot{x}(s) ds
\]

Therefore, by Schwartz’s inequality, the following can be derived from equation (4.3):

\[
\max_{0 \leq t \leq 2\pi} |\dddot{x}(t)| \leq (2\pi)^{1/2} D_2 \equiv D_3
\]

Thus,

\[
|\dddot{x}|_e \leq D_3 \quad \ldots \ldots \tag{4.4}
\]
The periodicity condition $x(0) = x(2\pi)$ on $x(t)$ implies that there exists the following:

$\tau \in [0,2\pi]$ such that $\dot{x}(\tau) = 0$. Thus the identity $\dot{x}(t) = \dot{x}(\tau) + \int_\tau^t \ddot{x}(s) \, ds$ holds.

That is, $\dot{x}(t) = \int_\tau^t \ddot{x}(s) \, ds$

Therefore, by equation (4.4),

$$\text{Max}_{0 \leq \tau \leq 2\pi} |\dot{x}(t)| \leq (2\pi)^{\frac{1}{2}} D_\tau \equiv D_4.$$

Thus,

$$|\dot{x}|_x \leq D_4 \quad \text{(4.5)}$$

All that remains now is for the first inequality for (3.11) to be fully established.

By integrating (3.1) with respect to t from $t = 0$ to $t = 2\pi$ and using the 2π periodicity condition:

$$\int_0^{2\pi} f_2(\tilde{x}) \, dt + \int_0^{2\pi} \lambda g(t,\tilde{x}) \, dt + \int_0^{2\pi} a_3 x dt = \int_0^{2\pi} \lambda p dt$$

That is,

$$\int_0^{2\pi} a_3 x dt = \int_0^{2\pi} p dt - \int_0^{2\pi} f(\tilde{x}) \, dt - \int_0^{2\pi} g(t,\tilde{x}) \, dt$$

since p is continuous and 2π periodic in t, p is definitely bounded. Similarly,

$$\int_0^{2\pi} f(\tilde{x}) \, dt \quad \text{and} \quad \int_0^{2\pi} g(t,\tilde{x}) \, dt$$

in view of (4.4) and (4.5) $f(\tilde{x})$ and $g(t,\tilde{x})$ are bounded.

Thus,

$$\int_0^{2\pi} a_3 x dt \leq D_5$$

In particular,

$$\int_0^{2\pi} x dt \leq D_6 \quad \text{(4.6)}$$

Now let

$$|x(\tau)| \leq D_7 \quad \text{(4.7)}$$

for some $\tau \in [0,2\pi]$. Thus the identity

$$x(t) = x(\tau) + \int_\tau^t \ddot{x}(s) \, ds$$

holds.

Suppose not, that is:

$$\int_0^{2\pi} x dt \geq D_7 \quad \text{(4.8)}$$

then equation (4.6) is violated. Therefore equation (4.6) holds. Thus,

$$\text{Max}_{0 \leq \tau \leq 2\pi} |x(t)| \leq \frac{1}{2} \left(\int_0^{2\pi} \dot{x}^2(t) \, dt \right)^{\frac{1}{2}}$$

by Schwartz's inequality. From (4.5),

$$|\dot{x}|_x \leq D_8 \quad \text{(4.9)}$$

The estimates (4.4),(4.5) and (4.9) verify (3.11) and thus follows the existence of 2π periodic solutions for equation (1.1)–(1.2).

REFERENCES

ABOUT THE AUTHOR

Hilary Mbadiwe Ogbo, Ph.D. is a Lecturer in the Department of Industrial Mathematics and Applied Statistics at Ebonyi State University in Abakaliki, Nigeria. Dr. Ogbo’s research interests are in the area of ordinary differential equations and systems.

SUGGESTED CITATION

The Pacific Journal of Science and Technology
http://www.akamaiusiversity.us/PJST.htm

Volume 7. Number 2. November 2006 (Fall)