Career Master: A Decision Support System (DSS) for Guidance and Counseling in Nigeria.

V.F. Balogun, M.Sc.¹ and A.F. Thompson, M.Tech.²

Department of Computer Science, Federal University of Technology, Akure, Ondo State, Nigeria.

E-mail: victobal@yahoo.co.uk¹
ronkeniran@yahoo.com²

ABSTRACT

The rate of students entering inappropriate disciplines in our tertiary institutions, especially Nigeria, is soaring. This invariably has caused the nation many unproductive and frustrated graduates. In view of this, there is a need to enhance the quality of service of the Guidance and Counseling Unit in Nigeria. This paper presents the development of a knowledge assistant (Decision Support System - DSS) for counselors to assist students in selecting the right discipline as they enter tertiary institutions, having considered the appropriate factors necessary for taking such decisions. Thus, the work which was carried out at the Department of Computer Science, Federal University of Technology, Akure, Nigeria was proposed for Secondary School "leaving students" who are likely to have a problem with their choice of carriers as they intend to study in at tertiary institutions of their choice.

The deployment of this work was discovered to have a high correlation with that of the conventional method of (using a human counselor) career counseling. It has the prospects of creating an unlimited accessibility to career guides for students and validated information on career suggestion by human counselors.

(Keywords: student counseling, counselors, academic discipline, DSS, career, guidance counseling)

INTRODUCTION

Modern psychological therapies trace their history back to the work of Sigmund Freud in Vienna in the 1880s, when he developed a method of working with hysterical patients which he called 'psychoanalysis'. Alfred Adler, Snador Ferenczi, Karl Abraham, and Otto Rank were trained by him. In response to the US prejudice against lay therapists, Carl Rogers adopted the word 'counseling', which was originally used by social activist Frank Parsons in 1908 (Mulhauser, 2005).

The difference between counseling and psychotherapy is largely academic. Individuals from psychodynamic traditions sometimes liken 'psychoanalysis' and 'psychotherapy'. The two terms are commonly used interchangeably in the US, with the understandable exception of 'guidance counseling', which is often provided in educational settings and focuses on career and social issues.

People’s reasons for seeing counselors are as diverse as people themselves. Often, clients have encountered upsetting experiences or situations, which they would like to talk about in a safe setting. These might include present circumstances of bereavement, separation, or other major life transitions, or experiences from the past, such as in childhood. Others seek help in dealing with specific psychological or behavioral traits, which they would like to amend, such as uncontrollable thoughts or difficulties relating to people.

Some people seek counseling to help them discover a general feeling that their lives are not quite right, or to deal with feelings of depression or anxiety. Still others look to counseling as part of their endeavor to realize or make meaning in their lives. Many people are attracted to counseling as a prospect to undertake personal development in a safe and encouraging environment. To crown it all, an individual does not necessarily need to have a 'problem' to find counseling useful.
Any individual that is not achieving set goals, irrespective of the level he has attained in the tertiary institution, may have been making wrong choices. Perhaps the student has allowed himself to be ruled by external forces (either parental or peer), or their set goals have not been high enough. Pragmatically, goals should be something a person passionately wants to realize. However, finding one in such a fix where set goals are not attained does not bring the world to an end; rather, the attention of a third party may be needed to resolve this situation.

Students need all facets of the career planning process including: finding ways to pursue passions, coming to understand interests and abilities, exploring financial and other types of post-secondary information, having help and support from trusting individuals, and obtaining detailed information about vocations and professions. Because students view school relationships as “quite or very helpful” to making career plans, educators who work with students in the area of career development (counselors, classroom teachers) need to continue to explore best practice related to career planning for their students.

A Counselor is usually the third party to be notified of a frustrating dilemma, for positive advice and consolation. Counselors help students identify their strengths and weaknesses by testing their Intelligence Quotient (I.Q.), skills, and ability and also identify their threats and opportunities, by analyzing their hobbies and background. The cumulative result assists the counselor in identifying a list of disciplines that will be appropriate for the student.

CAREER GUIDANCE AND COUNSELING: AN OVERVIEW

The importance of addressing the career- and life-planning needs of children and adolescents has emerged as a prominent theme in studies over the years (Hiebert and Bezanson, 1995; Levin, 1995; Powlette and Young, 1996). Because of changes in the economy, in technology, and in attitudes of employers and employees, career development and career guidance are receiving increased attention.

Bimrose et al. (2004) assert that changes in the labor market (like globalization and the development of information technology) have challenged the relevance of the established, narrow view of career transition as a one-off event at an early stage of an individual’s development, replacing it with a broader understanding of how transitions into education, training, and employment are more complex, more prolonged, and often span lifetimes.

Contemporary definitions try to capture the implications of these changes for guidance. Two examples are those proposed both by the Organization for Economic Co-operation and Development (OECD, 2004) and the Council of the European Union (2004). Both emphasize the need for guidance to support multiple transitions over a prolonged time-span and neither make particular distinctions about the type of activities guidance involves. The OECD (2004) notes how terms like information, advice, and guidance, vocational guidance, vocational counseling, career counseling, and career development are used to refer to a range of activities, which they include within the term ‘career guidance’ (p.18) and defined as:

Services intended to assist people of any age and at any point throughout their lives to make educational, training and occupational choices to manage their careers. Career guidance helps people to reflect on their ambitions, interests, qualifications and abilities. It helps them to understand the labour market and education systems, and to relate this to what they know about themselves.

Comprehensive career guidance tries to teach people to plan and make decisions about work and learning. Career guidance makes information about the labor market and about educational opportunities more accessible by organizing it, systematizing it, and making it available when and where people need it (OECD, 2004, p.19). The Draft Resolution of the Council of the European Union (2004) defines guidance in the context of lifelong learning, referring to it as:

...a range of activities that enables citizens of any age and at any point in their lives to identify their capacities, competences and interests, to make educational, training and occupations decisions and to manage their individual life paths in learning, work and other
settings in which these capacities and competences are learned and/or used.

In contrast, a discussion document from the Department for Education and Skills in the UK on information, advice and guidance (DfES, 2003), distinguishes four separate levels of service provision: information, advice, guidance, and personal support. Within this framework of differentiated provision, information, and advice are distinguished from guidance and personal support. Guidance is defined as helping clients to: understand their own needs relating to learning and work; set and review goals/objectives for learning and work; understand their barriers to learning and work; overcome barriers/obstacles to learning and work; and to produce learning and career action plans (p.15).

In our world today, a successful career is an important component of a happy life. Gone are the days when jobs just meant a way to earn a living. Nowadays, people work not only for money but for the satisfaction that field of employment can bring. Hence, counselors are needed to advising secondary school leavers on the career, which suits their persons, with a key focus on their interests, capabilities and hobbies.

Peterson and Gonzalez (2000) emphasize the new relationship of work to the global economy, the interdependence of social, political and economic systems and the issues of multiculturalism and diversity. Similarly, within our high technology and information age, Hughey and Hughey (1999) assert that students need help in preparing for entry into the changing labor market.

Several authors (Herr, 2000; Watts, 1996) indicate that the new role of schools in advanced industrialized societies is to provide the foundation for lifelong career development. In fact, Herr (2000) concludes that there is a need to make all schooling more career relevant. In summary, the chief assertion of these authors is that students must be prepared to meet the challenges of the changing labor market and therefore career development must be a priority.

The ongoing rate of change and uncertainty that awaits students as they enter the working world requires that they be prepared for the new realities of the competitive labor market and reduced post secondary education options. As Van Esbroeck (2000) cautions, “without life-long career counseling and guidance, there is a risk that many individuals will respond in a reactive rather than proactive way to the changes they face” (p. 52). The findings from studies conducted with students in their final year of high school until eighteen months after graduation suggest that the post high school transition is a time of personal stress and career turmoil (Borgen and Amundson, 2000). The data also support the assertion that individual career issues are important in the late-high school transition period.

Because the career aspects of the lives of high school graduates are no longer certain and cannot be taken for granted, adolescents who are navigating the perilous path of the transition to adulthood may also experience stress and disappointment related to career. Therefore career planning in schools must be a priority and there is a need to provide a system that is available 24 hours a day, 7 days a week for confused or desperate students at a cross-roads as well as a system that aids in the early submission of University Matriculation Examination (UME) forms.

Since expert counselors are scarce and unavailable all the time, a knowledge assistant (intelligent computer program) that operates as a Decision Support System (DSS) could be a right step in the right direction towards solving this global quandary.

THE DECISION SUPPORT SYSTEM (DSS)

Decision-makers receive and analyze information using many different media, including traditional print, group and interpersonal information exchanges, and computer-based tools. One set of computer-based tools has been termed Decision Support Systems. For more than 30 years, researchers and Information Systems specialists have built and studied a wide variety of systems for supporting and informing decision-makers that they have called Decision Support Systems or Management Decision Systems (Scott Morton, 1971, Power, 2001).

The concept involved in Decision Support System (DSS) was first articulated in the early 1970’s by Scott-Morton under the term management decision system. It was meant to be an adjunct to decision makers, to extend their capabilities but not to replace their judgments. They were aimed at decision where judgment was required, or at
decisions that could not be completely supported by algorithm. Sprague and Carlson (1982) defined DSS broadly as interactive computer based systems that help decision-makers use data and models to solve ill-structured, unstructured or semi-structured problems. A DSS could further be defined as an interactive computer-based systems, which help decision makers utilize data and models to solve unstructured problems (Gorry and Scott-Morton, 1971). Bonczek et al. (1981) argued that the "system must possess an interactive query facility, with a query language that is easy to learn and use ". Various types of DSS help decision-makers use and manipulate very large databases; some help managers apply checklists and rules; others make extensive use of mathematical models (Power, 1997).

Little (1970) also alleged that in order to be successful, such a system must be (1) simple, (2) robust, (3) easy to control, (4) adaptive, (5) complete on important issues, and (6) easy to communicate with. Many DDS are used to support an individual decision maker. However, many DSS researchers and practitioners (e.g., Keen (1980)) point out that the fundamental model of DSS – the lonely decision maker striding down the hall at high noon to make a decision – is true only for minor decisions. In most organizations, be they public or private, Japanese, European, or American, most major decisions are made collectively.

In making decisions collectively, one introduces a new dimension, namely the manner in which the group works together, communicates, and eventually arrives at a decision. This is a complicated process and it can be supported by computers. This is basically what is called group DSS. From those early days, it was recognized that DSS could be designed to support decision-makers at any level in an organization. DSS could support operations, financial management and strategic decision-making. DSS could use spatial data in a system like Geodata Analysis and Display System (GADS) (Grace, 1976), structured multidimensional data and unstructured documents (Swanson and Culnan, 1978).

Meador et al. (1984) asserted that many of the earlier DSS developed were institutionalized in nature, mainly owing to the high cost of developing a DSS for nonrecurring use. However, with the increased availability of general purpose DSS tools, with their steadily decreasing costs and increasing capabilities, and with the appearance of DSS software for microcomputers, it is possible to build ad hoc DSS in an economically justifiable manner. Beginning in about 1990, Bill Inmon and Ralph Kimball actively promoted DSS built using relational database technologies. In 1995, data warehousing and the World Wide Web began to impact practitioners and academics interested in decision support technologies. Web-based and web-enabled DSS became feasible in about 1995 (Power, 2000; Bhargava and Power, 2001).

CONVENTIONAL SYSTEM OF CAREER COUNSELING

Every counselor has a point of consultation: an office under an institution or a private owned office probably located in a section of his home. On visiting the counselor in any of these locations, the student is attended to, on the following scrutiny: (1) Collection of information from his/her personal data, (2) Determination of IQ strength, and (3) Consideration of external factors such as parental influence and peer pressure.

Collection of information from personal data.

The content of this personal data include:

a) Name of student
b) Secondary school attended
c) Level of study – either above or below SS3
d) Class of study – Science, Art or Commercial

Determination of IQ strength.

This is carried out by going through the student’s academic record and asking him/her to honestly access his/her academic strength. A conclusion is then reached based on this analysis.

Consideration of External Factors.

Eternal factors affecting a student’s in decision should not be out looked to avoid tarnishing the image of the counseling unit. The process through which a student is guided to take decision on the choice of a career is hereby represented in Figure 1 by a semantic network which is the knowledge representation technique used for the implementation of this research.
SYSTEM DEVELOPMENT APPROACH

The construction of a DSS, especially a large one, is a complicated process. It involves issues ranging from technical, such as hardware selection and networking, to behavioral, such as person – machine interfaces and the potential impact of DSS method on individuals and groups.

A comparative study of the various DSS development methodologies was compiled by Saxena (1992). He identified 32 different approaches, and discussed their major features and usability. Another surveyor, Arinza (1991) surveys the major methodologies used for DSS development. He analyzes them by structure in the decision making environment (see Figure 2). This structure serves as the architecture on which the project is modeled after.

THE DATA MANAGEMENT SYSTEM

The Data management System is composed of the following elements:

- DSS database
- Database Management System
- Database directory
- Query facility

Database

A database is a collection of interrelated data organized in such a way that it corresponds to the needs and structure of an organization and can be used by more than one person for more than one application.

The DSS (Career Master) system consists of four databases with table names: subject table, study table, pass table and course table. The subject table consists of all Art, Commercial, and Science subjects studied in Secondary schools. The study table consists of all the Study test questions used for the I.Q. assessment of the student. This table also contains the answers to those questions. The Pass table consists of the Password of the Administrator Form.
This enables the user to view, delete or update the courses or disciplines, O'Level subjects, and English comprehension for the study test. Changing the password is also made possible. The Course table consists of all courses studied in the Universities along side their explanation, or the services such disciplines render. It also consists of seven possible O'Level subject combinations, which match each course or discipline.

Database Management System

The Data Management Subsystem of the proposed DSS is composed of the database, DBMS, data dictionary, and query facility. The data in the database comes from three generalized sources: internal data, which is mainly from within the Guidance and Counseling Unit; the external data, which is mainly from outside the unit or organization; and the private data, which comes as a guideline used by the human counselor to access specific data and situations.

However, a Relational Data Base Management System (RDBMS) is better suited for DSS because their records contain pre-defined links to associated records in other files. This provides greater flexibility in retrieval of data. The relational database supported by this system includes:

- **Bio_Data** [personal_id, name, school, level_study]
- **Class_Study** [art, science, commercial]
- **I.Q._Status** [maths_testresult, literature_testresult]
- **Personal_Interest** [favorite_subjects, hobbies]
- **Parents’_Suggestions** [field_study, personal_interest]
- **Friends’_Suggestions** [field_study, personal_interest]

The Query Facility

The query facility element provides the basis for access to data. It accepts requests for data, determine how these request can be filled, formulates the detailed requests and returns the results to the issues of the request. The query facility includes a special query language. In the system, the query facility works with Expert System’s Production Rules to return the DSS suggestions of possible disciplines to clients. An example of this rule is:

IF student’s I.Q. Test is poor or fair
Collect all the courses suggested by DSS From initially selected O'Level subjects
Else
IF student’s I.Q. Test result is excellent or good
Go to the Knowledgebase and
Select Art, Science or Commercial-inclined courses
Then DISPLAY

The Directory
The data directory is a catalog of all the data in the database. It contains the data definitions and its main function is to answer questions about the availability of data items, their source, or their exact meaning. The directory is especially appropriate for supporting the intelligence phase of the decision making process by helping to scan data and identify problem areas or opportunities. The directory supports the addition of new entries, deletion of entries and retrieval of information on specific object.

THE MODEL MANAGEMENT SUBSYSTEM
The model management subsystem of the DSS is composed of the model base, model base management system, modeling language, model directory and model execution, integration and command processor. Model base contains routine and special statistical, counseling models, management, science, and other quantitative models that provide the analysis capabilities for the DSS. The model supported by this DSS is analyzed as follows:

Domain Set

Class = {art, science, commercial}
Age (years) = {18, 19, 20, 21, 22, …}
I.Q. Test = {mathematics, literature}
Hobby = {talent, skill, interest}
Friends’ suggestions = {field of study, personal interest}
Parents’ suggestions = {field of study, personal interest}

A student Si,j finishes secondary school at age i and in about j years later, the student Si,j wants to fill his or her JAMB form. Thus, he or she needs a discipline of study. It is therefore the duty of the Counselor to consider basically the I.Q. strength and parents’ suggestions.

Let λn represent the I.Q. strength of Si,j
θn represent the parents’ suggestion for si,j
If Si,j has a high λn and θn correlates with λn,
Then $\lambda n \equiv \theta n$
If Si,j has a low λn and θn does not correlate with λn,
Then $\lambda n \neq \theta n$
Considering other factors such as hobby and friends’ suggestions for Si,j:
Let α represent the hobby of Si,j
β represent the friends’ suggestions for Si’j
If λn correlates with α,
Then $\lambda n \equiv \alpha$ and α can thus be included in DSS suggestions
If λn does not correlate with α,
Then $\lambda n \neq \alpha$ and α will be discarded from DSS suggestions
If λn correlates with β,
Then $\lambda n \equiv \beta$ and β can thus be included in DSS suggestions
If λn does not correlate with α,
Then $\lambda n \neq \beta$

Therefore, the Matrix Ki,j can be generated as:

$$
K_{i,j} = \begin{pmatrix}
\lambda_{1,1} & \theta_{1,2} \\
\lambda_{2,1} & \theta_{2,2} \\
... & ... \\
\lambda_{x,n} & \theta_{x,n+1}
\end{pmatrix}
$$

The Matrix Pi,j can then be generated as follows:
The Knowledge Subsystem

Many unstructured and semi-structured problems are so complex that they require expertise for their solution in addition to the regular DSS capabilities. Such an expertise can be provided by an expert system. Therefore, the more advanced DSS are equipped with a component that we call knowledge management.

To solve complex problems of clients with clashing subject combinations, hobbies, friends' and parents' suggestions, this system makes use of certain production rules in its rule base. Among which are:

- **IF student's I.Q. Test is poor or fair**
 Collect all the courses suggested by DSS
 From initially selected O'Level subjects
- **Else**
 IF student's I.Q. Test result is excellent or good
 Go to the Knowledgebase and
 Select Art, Science or Commercial-inclined courses
 Then DISPLAY

Using parents' suggestion as (p) and friends' suggestions as (f):

- **IF p is in DSS I.Q. result**
 Then Select and print p.corelated
 And discard the other courses
- **Else**
 Print suggested by p
 And keep DSS I.Q. result

The Dialog Subsystem

The dialog component of a DSS is the software and hardware that provides the user interface for DSS. The term user interface covers all aspects of the communications between a user and the DSS. It includes not only the hardware and software, but also factors that deal with ease of use, accessibility, and human-machine interactions.

In this work, the dialogue components include: the text boxes for input of client's name and school; option buttons for client's class and level of study; list boxes for displaying course lists to clients; and command buttons for knowing client's selection, asking the DSS for reasons for asking questions and adding selections to list of courses for comparison by the DSS. A pictorial representation is shown in Figure 3.

HIERARCHICAL DESIGN OF THE SYSTEM

The main processing activities of the system were identified during the analysis of the existing system. Activities such as student registration and development processing were explicit in the exiting system. These activities were refined and broken down into modules as depicted in Figure 4.
Figure 3: DSS User Interface Subsystem.

Figure 4: Hierarchical Design of Career Master.

LANGUAGE OF IMPLEMENTATION

The system is implemented on the platform of Visual Basic (Version 6.0), an object-oriented programming language. Visual Basic is an easy-to-use programming language with enhanced human-computer interface. This interface is similar to that provided by window application and thus any user already familiar with windows can easily handle Visual Basic applications. Database manipulation is another powerful feature of Visual Basic that makes it suitable for this paper. Visual Basic also allows for scalability, a feature which supports incremental delivery. The purpose of this
paper is to produce a prototype copy of the software, which will later evolve to the final product. Scalability therefore, satisfies this need as additions to modules can be made without destroying the structure of the application. With scalability many versions of the software can be released at different times.

FEATURES OF THE SOFTWARE PRODUCT
The following qualities are inherent in the software product:

i. Anticipation of Change: the fact that the Human Counseling scheme is dynamic calls for the need for software that can accommodate changes over time. The principle of anticipation of change allows identifying areas where changes are likely to occur. To deal with these changes, the database structure used allows the system administrator to constantly update items like available subjects, disciplines, hobbies, etc. The software recognizes the different criteria for deciding on a suitable discipline of study for the student.

ii. Data Validity: this is the level of acceptability of data by a system. Codes that check for errors were built into the module that gets user's input. For example, the system validates the student's number of favorite subjects to ensure that they do not exceed the specified amount.

iii. End-user Interface: the system is user friendly as users can click on various options representing what they want to do. More so, a help facility for each step is provided.

iv. Controlled Data Access: Access to data is controlled throughout the system. There is need to identify people using such information to prevent unauthorized users from tampering with the data and knowledge bases. Hence the system identifies the Administrator as the only authorized user, using a password.

Starting the System: To use the system, after reading the instructions on the Welcome Screen, the user clicks on the “Next” button, which takes him to the Personal Data Form. This is depicted in Figure 5.

Figure 5: Filling the Forms.
This phase is achieved by clicking the “Next” button on the left side of the form.

On clicking the “Next” button, the user is taken to the test environment as depicted in Figure 6. When the radio button for the Mathematical test is checked, the test form appears. The user clicks the “Start” button to start the test; supplies the answers and clicks on the “Mark” button to determine his score. The user clicks on the “Next” button to proceed to another phase where he answers the questions and clicks on the “Mark” button to view the results.

After the study test, the DSS takes its client to the next phase to determine his hobbies, friends’ and parents’ suggestions. These windows are however enabled when the client closes the correlated data window which appears on the form as shown in Figure 7.

On closing the correlated data window (which shows DSS’ suggestion so far), the other questions become enabled. On subsequent filling of the form, that is, after filling the Parents’ suggestion column, the user is expected to click the ADD TO LIST button as done in the Friends’ suggestion column. This is the final result form which is depicted in Figure 8.

Another part of the output of the DSS is the explanation capability or justifier, which gives reasons for questions asked and decisions arrived at. A screenshot is also shown in Figure 9. The dialog box beside figure 9 was displayed as a result of the user clicking on the WHY button beside “Your Mathematical Ability”. It portrayed the inference rule used by DSS in taking its decision.

Figure 6: The Mathematical Test Form.

The Pacific Journal of Science and Technology

http://www.akamaiuniversity.us/PJST.htm

Volume 10. Number 2. November 2009 (Fall)
RESULTS AND FINDINGS

The analysis of results from the implementation of the DSS compared with the findings from the output generated as a result of interactions with human counselors are hereby presented in the table below.
<table>
<thead>
<tr>
<th>Individual Student Reference Number</th>
<th>Class Category</th>
<th>Maths Result</th>
<th>Parental Choice</th>
<th>Friends Choice</th>
<th>Students Interest Choice</th>
<th>Human Counselor Choice</th>
<th>DSS Selected Course</th>
<th>Correlation Bwn Student Human Career Major</th>
<th>Career Major Correlation Bwn Human Career Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCIENCE FAIR</td>
<td>Mechanical Engineering</td>
<td>Civil Engineering</td>
<td>Electrical Engineering</td>
<td>Computer Science</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ART FAIR</td>
<td>Law</td>
<td>Law</td>
<td>Commerce, Law</td>
<td>Accounting/Accounting, Banking/Finance, Insurance</td>
<td>Very High</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SCIENCE FAIR</td>
<td>Mechanical Engineering</td>
<td>Civil Engineering</td>
<td>Electrical Engineering</td>
<td>Computer Science</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SCIENCE FAIR</td>
<td>Mechanical Engineering</td>
<td>Civil Engineering</td>
<td>Electrical Engineering</td>
<td>Computer Science</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SCIENCE GOOD</td>
<td>Applied Geology</td>
<td>Medicine and Surgery</td>
<td>Electrical Engineering</td>
<td>Pharmacy</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>SCIENCE GOOD</td>
<td>Applied Geology</td>
<td>Medicine and Surgery</td>
<td>Electrical Engineering</td>
<td>Pharmacy</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SCIENCE GOOD</td>
<td>Applied Geology</td>
<td>Medicine and Surgery</td>
<td>Electrical Engineering</td>
<td>Pharmacy</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ART POOR</td>
<td>Law</td>
<td>Theatre Arts</td>
<td>Commerce, Law</td>
<td>Accounting/Accounting, Banking/Finance, Insurance</td>
<td>Very High</td>
<td>Very High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SCIENCE FAIR</td>
<td>Medical and Surgery</td>
<td>Medicine and Surgery</td>
<td>Medicine and Surgery</td>
<td>Biochemistry</td>
<td>Computer Science, Petro-Chemical Engineering, Biochemistry</td>
<td>Average</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SCIENCE POOR</td>
<td>Medical and Surgery</td>
<td>Medicine and Surgery</td>
<td>Medicine and Surgery</td>
<td>Biochemistry</td>
<td>Computer Science, Petro-Chemical Engineering, Biochemistry</td>
<td>Average</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SCIENCE POOR</td>
<td>Medical and Surgery</td>
<td>Medicine and Surgery</td>
<td>Medicine and Surgery</td>
<td>Biochemistry</td>
<td>Computer Science, Petro-Chemical Engineering, Biochemistry</td>
<td>Average</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>SCIENCE POOR</td>
<td>Medical and Surgery</td>
<td>Medicine and Surgery</td>
<td>Medicine and Surgery</td>
<td>Biochemistry</td>
<td>Computer Science, Petro-Chemical Engineering, Biochemistry</td>
<td>Average</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>SCIENCE EXCELLENT</td>
<td>Medical and Surgery</td>
<td>Medicine and Surgery</td>
<td>Medicine and Surgery</td>
<td>Biochemistry</td>
<td>Computer Science, Petro-Chemical Engineering, Biochemistry</td>
<td>Average</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SCIENCE EXCELLENT</td>
<td>Medical and Surgery</td>
<td>Medicine and Surgery</td>
<td>Medicine and Surgery</td>
<td>Biochemistry</td>
<td>Computer Science, Petro-Chemical Engineering, Biochemistry</td>
<td>Average</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>SCIENCE FAIR</td>
<td>Mechanical and Surgery</td>
<td>Architecture, Quantity Surveying</td>
<td>Architecture, Quantity Surveying</td>
<td>Estate Management</td>
<td>Quantity Surveying</td>
<td>High</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ART POOR</td>
<td>Law</td>
<td>Law</td>
<td>Commerce, Law</td>
<td>Accounting/Accounting, Banking/Finance, Insurance</td>
<td>High</td>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ART POOR</td>
<td>Law</td>
<td>Law</td>
<td>Commerce, Law</td>
<td>Accounting/Accounting, Banking/Finance, Insurance</td>
<td>High</td>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>ART FAIR</td>
<td>Law</td>
<td>Law</td>
<td>Commerce, Law</td>
<td>Accounting/Accounting, Banking/Finance, Insurance</td>
<td>High</td>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>SCIENCE FAIR</td>
<td>Estate Management</td>
<td>Biochemistry, Quantity Surveying</td>
<td>Architecture, Quantity Surveying</td>
<td>Management</td>
<td>Architecture, Quantity Surveying</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SCIENCE POOR</td>
<td>Architecture</td>
<td>Biochemistry, Quantity Surveying</td>
<td>Estate Management</td>
<td>Architecture, Quantity Surveying</td>
<td>High</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>SCIENCE POOR</td>
<td>Estate Management</td>
<td>Biochemistry, Quantity Surveying</td>
<td>Estate Management</td>
<td>Architecture, Quantity Surveying</td>
<td>High</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>SCIENCE FAIR</td>
<td>Estate Management</td>
<td>Biochemistry, Quantity Surveying</td>
<td>Estate Management</td>
<td>Architecture, Quantity Surveying</td>
<td>High</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SCIENCE FAIR</td>
<td>Medical and Surgery</td>
<td>Medicine and Surgery</td>
<td>Medicine and Surgery</td>
<td>Pharmacy</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>ART POOR</td>
<td>Mechanical Engineering,</td>
<td>Mechanical Engineering,</td>
<td>Quantity Surveying</td>
<td>Estate Management</td>
<td>Management Information</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Analysis Results.
<table>
<thead>
<tr>
<th>Individual Reference Number</th>
<th>Class Category</th>
<th>Maths Result</th>
<th>Parental Choice</th>
<th>Friends Choice</th>
<th>Students Interest Choice</th>
<th>Human Counselor Choice</th>
<th>DSS Selected Courses</th>
<th>Correlation Between Human Counselor Choice and Students Interest Choice</th>
<th>Correlation Between Human Counselor Choice and DSS Selected Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Electrical Engineering, Medicine and Surgery</td>
<td>Electrical Engineering, Medicine and Surgery</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Very High</td>
<td>Very High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ART</td>
<td>FAIR</td>
<td>Law</td>
<td>Law</td>
<td>Law</td>
<td>Accountancy/Accounting, Banking/Finance, Insurance</td>
<td>High</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Electrical Engineering</td>
<td>Applied Geophysics</td>
<td>Applied Geophysics</td>
<td>Applied Geology, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>ART</td>
<td>POOR</td>
<td>Fine/Applied Art, Accountancy Accounting</td>
<td>Computer Science, Computer Science, Accounting</td>
<td>Accountancy/Accounting, Banking/Finance, Insurance</td>
<td>Low</td>
<td>Very High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Electrical Engineering</td>
<td>Applied Geophysics</td>
<td>Electrical Engineering</td>
<td>Applied Geology, Civil Engineering, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Electrical Engineering</td>
<td>Applied Geophysics</td>
<td>Electrical Engineering</td>
<td>Applied Geology, Civil Engineering, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>ART</td>
<td>POOR</td>
<td>Fine/Applied Art</td>
<td>Accountancy Accounting</td>
<td>Accountancy Accounting</td>
<td>Accountancy/Accounting, Banking/Finance, Insurance</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Electrical Engineering</td>
<td>Applied Geophysics</td>
<td>Electrical Engineering</td>
<td>Applied Geology, Civil Engineering, Computer Science</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Electrical Engineering</td>
<td>Applied Geophysics</td>
<td>Electrical Engineering</td>
<td>Applied Geology, Civil Engineering, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>ART</td>
<td>FAIR</td>
<td>Fine/Applied Art</td>
<td>Accountancy Accounting</td>
<td>Computer Science</td>
<td>Accountancy/Accounting, Banking/Finance, Insurance</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>ART</td>
<td>FAIR</td>
<td>Law</td>
<td>Law</td>
<td>Law</td>
<td>Insurance, International Studies</td>
<td>High</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Mechanical Engineering</td>
<td>Electrical Engineering</td>
<td>Computer Science</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>ART</td>
<td>FAIR</td>
<td>Law</td>
<td>Law</td>
<td>Commerce, Law</td>
<td>Accountancy/Accounting, Banking/Finance, Insurance</td>
<td>Very High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Mechanical Engineering</td>
<td>Electrical Engineering</td>
<td>Computer Science</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Mechanical Engineering</td>
<td>Electrical Engineering</td>
<td>Electrical Engineering</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>SCIENCE</td>
<td>GOOD</td>
<td>Applied Geology</td>
<td>Medicine and Surgery</td>
<td>Electrical Engineering</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Very High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>SCIENCE</td>
<td>GOOD</td>
<td>Applied Geology</td>
<td>Medicine and Surgery</td>
<td>Electrical Engineering</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>SCIENCE</td>
<td>GOOD</td>
<td>Applied Geology</td>
<td>Medicine and Surgery</td>
<td>Electrical Engineering</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>ART</td>
<td>POOR</td>
<td>Law</td>
<td>Theatre Arts</td>
<td>Commerce, Law</td>
<td>Accountancy/Accounting, Personnel Management, Public Administration</td>
<td>Very High</td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>SCIENCE</td>
<td>FAIR</td>
<td>Civil Engineering</td>
<td>Electrical Engineering</td>
<td>Medicine and Surgery</td>
<td>Civil Engineering, Computer Science, Mechanical Engineering</td>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>ART</td>
<td>POOR</td>
<td>Law</td>
<td>Theatre Arts</td>
<td>Commerce, Law</td>
<td>Accountancy/Accounting, Personnel Management, Public Administration</td>
<td>Very High</td>
<td>Very High</td>
<td></td>
</tr>
</tbody>
</table>
The Federal University of Technology, Secondary Staff Secondary School was used as a case study with the DSS.

The students were writing their final and National Secondary School Examination for 2006/2007 academic session. Applying the Set Theory to the result of the table, the following were the correlation outcomes.

Correlations:

Very High Implies if DSS or Student Interest ≡ Human Counselor Choice

High Implies if DSS or Student Interest ≠ Human Counselor Choice

Average Implies if DSS or Student Interest are in the same category with Human Counselor

Low Implies if DSS or Student Interest ≠ Human Counselor Choice

CHECKING THE DEGREE OF CORRELATION

The following values are assumed because the “Choices” cannot be quantified.

- Low ≡ 5 for x and y
- Average ≡ 10 for x and y
- High ≡ 15 for x and y
- Very High ≡ 20 for x and y

Using the Correlation formula:

Thus, \[R = \frac{50 \times 750 - 50 \times 50}{\sqrt{50 \times 750 - (50)^2} \times (50 \times 750 - (50)^2)} \]

\[R = \frac{37500 - 2500}{\sqrt{(37500 - 2500) \times (37500 - 2500)}} \]

\[R = \frac{37500}{\sqrt{(37500) \times (37500)}} \]

\[R = 1 \]

Figure 10 a and b: Correlation Data.

CONCLUSION AND FURTHER RESEARCH DIRECTION

In Nigeria and most countries of the world, statistics have shown that many students in higher education institutions are in the wrong academic choice. The reasons for this are not far-fetched; some of these are poor advisement by counselors, advice and wishes of parents, peer pressure from colleagues, and a host of other reasons.

This paper thus discussed the design and the result of implementation of a Decision Support System for proper guidance and counseling of students, especially those leaving the secondary
school, to guide and suggest a list of best courses that could be pursued in the tertiary institution. These suggestions are however based on some basic parameters used by human counselors such as: Intelligence Quotient, hobbies, parents’ and friends’ influences, etc.

The system is at present designed for the desktop of the counselors to enhance the duty of choosing the best and most appropriate discipline for clients. The development of the system suffered some setbacks in the acquisition pre-requisite data needed for justification, but eventually a particular model was chosen and used for the work.

We also present an appraisal of the implementation of this research by comparing it with the conventional method of caring out career counseling. The observed high correlation between the two thus justifies the study. We hope to expand this work so that it could be used by students themselves as well as been deployed over the Internet so as to allow students all over the world assess themselves and come out with the best choice of career before getting into higher institutions. This is consistent with the fact that “to derive the educational benefit, students must do the self assessment, reflection, and analysis themselves” (Blustein, 1997).

Teachers and counselors in turn play the role of facilitator, guide, mentor, and collaborator as they lead the students through the process, not make the choice for them. This will enhance a change from the teacher-centered/counselor-centered approach of career counseling to the career development model that emphasizes self-exploration and the development of lifelong exploratory attitudes.

REFERENCES

ABOUT THE AUTHORS

Victor Balogun (victobal@cs.umanitoba.ca) is presently a Ph.D. student of Computer Science and a Seasonal Instructor at the University of Manitoba, Canada. His current research interests include adaptive routing protocols for wireless mesh networks and evaluation of transport layer protocols for cognitive radio networks. He has also done extensive research in areas like Decision Support Systems, Virtual Reality Systems, Geographical Information Systems, and Mobile Computing. He received his B.Tech. Degree in Computer Science from the University of Technology, Akure, Nigeria and his M.Sc. from the University of Lagos, Nigeria. He has worked as a System Engineer at Power Holding Company of Nigeria for several years after which he left to lecture at the Federal University of Technology, Akure in 2004.

Aderonke F. Thompson (ronkeniran@yahoo.com) obtained a B.Tech. degree in Computer Engineering from Ladoke Akintola University of Technology, Ogbomoso, Nigeria where she worked as a System Programmer/Analyst; and a M.Tech. degree in Computer Science from the Federal University of Technology, Akure, Nigeria. She started lecturing in 2006 and currently is a Ph.D. student in the Department of Computer Science, Federal University of Technology, Akure, Nigeria. Her research interests are in wireless and telecommunication networks security, software engineering, artificial intelligence, and bioinformatics.
SUGGESTED CITATION